The rapid devolopment of Internet of Vehicles (IoV) and Autonomous Connected Vehicles (ACVs) has increased the complexity of in-vehicle networks, exposing security vulnerabilities in traditional Controller Area Network (CAN) systems. CAN security faces dual challenges: stringent computational constraints imposed by automotive functional safety requirements and the impracticality of protocol modifications in multi-device networks. To address this, we propose a lightweight intrusion detection algorithm leveraging information entropy to analyze side-channel CAN message ID distributions. Evaluated in terms of detection accuracy, false positive rate, and sensitivity to bus load variations, the algorithm was implemented on an NXP MPC-5748G embedded platform through the AutoSar Framework. Experimental results demonstrate robust performance under low computational resources, achieving high detection accuracy with high recall (>80%) even at 10% bus load fluctuation thresholds. This work provides a resource-efficient security framework compatible with existing CAN infrastructures, effectively balancing attack detection efficacy with the operational constraints of automotive embedded systems.
Loading....